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How to Analyse a Rapid Light Curve – a Guide 

Rapid Light Curves can easily be generated with most PAM fluorometers using the program 

supplied with the instrument you are using. Some fluorometers even provide automated 

analysis of these curves. However, the default RLC settings may not be ideal for your study, 

and the curve fitting analysis may also not be suitable for your purposes.  

This Guide aims to help you do three things:  

1) correctly set up your PAM fluorometer,  

2) choose the best RLC settings for your experimental design or sampling 

regime, and  

3) analyse your curves to determine parameter estimates with their estimates 

of error (we will touch on comparisons between sets of curves). 

Detailed discussions of RLC and RLC parameter interpretation are well beyond the scope of 

this Guide – see White and Critchley (1999) and Ralph and Gademann (2005) for this 

essential background.  Nomenclature is still contested, you could use Van Kooten and Snel 

(1990) or the more recent Cosgrove and Borowitzka (2011). 

After reading this Guide you can expect to have learnt: 

1. What a RLC is. 

2. How and why to set up your fluorometer. 

3. How and why to set up a RLC; and how to run it. 

4. How to analyse the RLC to determine parameter estimates and their error. 

5. How to compare RLCs between treatments. 

First, some background… 

1.  What is a Rapid Light Curve? 

A typical Rapid Light Curve (or RLC) is derived from a rapid (e.g. 90 second) light treatment 

applied to a photosynthetic sample (leaf, thallus, culture).  During exposure to the 

treatment light, the photosynthetic capacity (the effective quantum yield of electron 

transport through photosystem II (PSII), or PSII) is measured numerous times using the 

saturation pulse method.  A curve treatment may start with a saturating pulse measurement 

(PSII) followed by a 10 second interval of exposure to low intensity actinic light and another 

PSII measurement, again followed by a 10 second exposure to slightly stronger actinic light 

and another PSII measurement.  Actinic light is the light provided by the fluorometer that 

“drives” the photosystem.  There may be as few as five steps, typically eight, and possibly 

more.  Values of PSII generally range from a maximum of around 0.83, indicating 83% of 

absorbed light energy is directed to PSII, down to 0%. 
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By plotting PSII against PAR, we can see how PSII gradually declines with increases 

irradiance.  However, by calculating photosynthetic rate and plotting this against PAR we 

generate a light response curve, or PE curve.  These curves have been around for many 

years, and show how photosynthetic rate reaches a maximum at a certain irradiance, among 

other things. 

To estimate photosynthetic rate from each data point, we calculate Electron Transport Rate 

(ETR) by multiplying PSII and PAR of the preceding interval, and then multiply this by two 

constants. If the constants are unknown, simply use “1” to determine relative electron 

transport rate (rETR).  The constants are 1) the absorptance of the sample and 2) the ratio 

of PSII/(PSII+PSI).  Values of calculated rETR or ETR are then plotted against PAR of each 

interval.  A typical curve starts from the origin (0,0) as a line, then levels off (asymptotes) at 

high irradiances eventually reaching a maximum.  Some curves may then decline in ETR with 

higher PAR, often referred to as photoinhibition.  See White and Critchley (1999) for a 

comprehensive discussion of RLCs, and the later paper by Ralph and Gademan (2005). 

An important point to keep in mind is that for most RLCs all the measurements are made on 

the same section of sample.  This means that each data point on the curve is not 

independent of the other points.  Often this is conveniently ignored, and in some situations 

that is OK.  However, it is ultimately up to you to make that call.  See White and Critchley 

(1999) for a discussion on this point. 

RLCs indicate the irradiance where maximum ETR is attained, and may also indicate the 

onset of apparent photoinhibition at greater irradiances. 

What other measurements should I make when I run a Rapid Light Curve?  

• Photosynthetically Active Radiation (PAR): electron transport rate can only be 

calculated with a value for incident light. In units mols quanta m-2 s-1. 

• Absorptance: this is often assumed to be 0.84, however this value can vary 

significantly within and between individuals and species.  This is also used to 

calculate electron transport rate 

• PSII/(PSI+PSII): the proportion of energy directed to photosystem II, often assumed 

to be 0.5 but can deviate from this value 

These values (PAR, Absorptance and PSII(PSI+PSII)) are used with PSII to calculate Electron 

Transport Rate (ETR) according to Genty’s equation (or relative ETR (rETR) if Absorptance 

and/or PSII(PSI+PSII) are not known): 

𝐸𝑇𝑅 = 𝛟𝑷𝑺𝑰𝑰 x PAR x Abs. x [PSII/(PSI + PSII)]   (1) 

𝑟𝐸𝑇𝑅 = 𝛟𝑷𝑺𝑰𝑰 x PAR      (2) 

What data can be derived from a Rapid Light Curve?  
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• II immediately commencing the RLC 

• II at the measured ambient irradiance, interpolated from the curve 

• ETR associated with each saturating pulse measurement made during the curve. In 

units mol e m-2 s-1. 

• ETRmax: the maximum ETR attained. In units mol electrons m-2 s-1. 

•  or alpha; the initial slope of the curve. In units electrons/quanta (only use these 

units when actual ETR is determined, not rETR). 

• Ek: the minimum saturation irradiance, where maximum ETR would be reached if 

there was no inflection in the curve (i.e. extrapolate the initial linear part of the 

curve to intersect with maximum ETR (or rETR).  In units mol quanta m-2 s-1. 

•  or beta, a little used parameter that characterises the downturn of the curve after 

reaching ETRmax. 

Now, to set up your PAM for optimal results… 

2. Setting up your PAM fluorometer 

Clear a space, grab your PAM fluorometer and a test sample, or random leaf if you are just 

getting used to the procedure. 

1. Prepare the test sample for setup measurements.  Preferably choose a sample that 

has not been subjected to strong light. 

2. Saturating Pulse (SP) duration: Select your duration of the saturation pulse (often 

known as the saturation width):  e.g. 800 ms is often used when examining a leaf. 

3. SP intensity: select the intensity of the saturating pulse. Often the default setting is 

adequate.  Ideally, select an intensity that will provide a saturating curve rather than 

a stepwise function between fluorescence values of F and Fm.  If the latter, reduce 

the intensity until the a curve is generated. 

4. AUTOGAIN: If your PAM fluorometer has the function, select AutoGain or its 

equivalent.  This will set the gain of the fluorometer to a suitable level.   

If your fluorometer requires you to manually set the gain, select a gain value where 

the F value of an unstressed sample (i.e. collected early in the morning) is about one 

eighth (0.125) the highest acceptable Fm value.  For example, if the maximum value 

on the PAM is 4000 units, then the gain should be set so the F value of an unstressed 

sample is less than 400 units.  This will ensure that highest expected value of Fm 

does not exceed the instrument maximum. 

5. AUTOZERO: Now remove the sample from the measuring area of the PAM 

fluorometer, ensure nothing else that might fluoresce will be seen by the 

fluorometer, and select AutoZero.  F should now read around zero. 

If your fluorometer requires you to manually set zero, take an average of the F value 

and subtract this value from all subsequent values 
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6. Test Measurement: take a measurement on a fresh part of the same leaf or sample.  

If the sample is an unstressed green leaf subjected to low light for at least an hour 

one might expect a PSII value between 0.7 to 0.83. Much less than this and you may 

want to repeat the setup procedure again on a new sample, to be sure. 

 

3. Constructing and running a RLC 
 

Now that you have set up your PAM fluorometer for making useful PSII and Fv/Fm 

measurements, let’s focus on the RLC settings. 

 

1. Actinic intervals:  You’ll need to set the intensity of the actinic light during each interval.  

Different fluorometers provide different options for setting the actinic light intensity.  

The ideal settings will generate several data points when light intensity is low and the 

curve is a straight line, and several data points at high light intensity to capture the 

saturating nature of the curve.  If you are more interested what is happening under low 

light conditions, then you will obtain a better estimate of  with more low-light data 

points. 

2. Actinic interval duration:  The duration of each interval or step can generally be altered 

from 10 seconds(typical) to 30 seconds or more.  At some duration of interval Rapid 

Light Curves are no longer rapid.  The functional definition of “rapid” is largely based on 

the premise that for a curve to be rapid, fundamental changes in the photochemistry of 

the sample have not yet had sufficient time to occur.  This is incorrect when it comes to 

changes in energy-dependent non-photochemical quenching (qE), as processes 

described by this parameter are activated and de-activated within seconds.  However. 

physiological processes that take longer to be induced can be assumed to be largely 

unchanged during the RLC. 

Running the RLC 

This is the easy part.  Most of the hard work is done before and after generating the curve! 

1. Place the sample of interest in the position where it is to be measured (either over the 

window of the PAM fluorometer, in the sample holder clip or in front of the fibre optic 

leading from the fluorometer).  Ensure the sample will not move during the RLC 

procedure (very important). 

2. Exclude ambient light from the sample.  Complete darkness is not necessary, but less 

light than that provided during the first actinic interval is best. 

3. Initiate the curve, ensuring darkness (apart from the fluorometer light) is maintained.  It 

is essential the sample does not move for the entire duration of the treatment.  If it 

moves, fluorescence intensity is likely to change as you will be looking at a new section 

of sample, and subsequent measurements cannot be related to the first measurements. 
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Running a Recovery Curve after the RLC 

With increasing light intensity, PSII declines.  When the “light pressure” is removed at the 

end of the RLC treatment, PSII “bounces back”, gradually increasing until, if still in darkness, 

Fv/Fm will be reached.  The kinetics of this recovery can be examined by analysis of a so-

called Recovery Curve.  Recovery of a process from a high light treatment is best modelled 

with an exponential function.  Recovery typically comprises two (or sometimes three) 

processes, each with different halftimes and this can be modelled with a double exponential 

model.  The majority of recovery occurs rapidly (within minutes), and the remainder can 

take a long time to fully recover (hours).  So, the ideal measurement regime to capture the 

recovery of a photosynthetic sample to a high light treatment takes the form of many 

measurements taken during the initial recovery phase with progressively less frequent 

measurements taken at longer and longer intervals. 

4. How to extract data from a RLC 

Preparation of the RLC graph 

Let’s assume you measured the actinic PAR at each interval of a light curve, correctly set up 

the gain and zero settings of the PAM fluorometer, and ensured the sample remained fixed 

during the measurements with minimal ambient light reaching the sample.  The PAM 

fluorometer provides you with PSII values measured at the end of each interval. 

• Assemble the PAR values for each interval in Column A (starting with zero), and in 

Column C add the corresponding PSII values.  The first PSII value corresponds with 

the zero PAR value.  This value is actually not used in most RLCs, as electron 

transport is assumed to be zero in the dark. 

• Now in Column B, multiply the PSII values with values for absorptance and 

PSII/(PSII+PSI).  If you do not have these values, you will only be able to present 

values of relative ETR (rETR). 

• Create a line graph of ETR (y-axis) vs PAR (x-axis).  The initial part of the line 

extending from the origin should be straight, with the latter part forming a curve 

which approaches or reaches a maximum (the asymptote).  You may find the curve 

then curves downwards again with even higher irradiances. 

Analysis of the RLC - models 

The aim here is to extract values of the parameters ETRmax, Ek and  and potentially 

estimates of error associated with these values from your data.  The data we use is simply 

the two columns, PAR and ETR. 

There are a multitude of models that have been used to describe RLCs and more generally 

PE curves.  Each model, or equation, assumes a particular relation between the parameters.  

Some models introduce new parameters that do not have a direct biological meaning and 
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should only be used if that model addresses a specific problem.  Ideally, a model should 

have functions that directly describe known processes.  For example, single-or multi-

compartment exponential models are best used to describe recovery curves, as exponential 

decay best describes the relaxation of physiological processes that were induced by the light 

treatment and causes a depression in PSII. 

PE curve modellers tend to have their own favourite models they use to describe RLCs.  As 

many of my curves were either simple asymptotes, or were both asymptotic with a 

downturn at higher irradiances, I selected a model that enabled me to analyse both types of 

curves.  This model comprises two terms: one two-parameter term for the asymptote, and a 

second term (with a third parameter) which could be added if the curve also experienced a 

downturn.  The second term could be excluded if there was no downturn.  This approach is 

important as one can only compare parameters derived from models with the same 

fundamental basis, parameters derived from fundamentally different models are 

incompatible and should not be compared directly. 

The model describing RLCs that have no downturn at high irradiances (i.e. a simple 

asymptote) is: 

𝐸𝑇𝑅 = 𝐸𝑇𝑅𝑚𝑎𝑥 [1 − exp (−
𝛼𝐸

𝐸𝑇𝑅𝑚𝑎𝑥
)]  (3) 

 

This model is modified with an additional term to account for a downturn in ETR: 

 

𝐸𝑇𝑅 = 𝐸𝑇𝑅𝑠 [1 − exp (−
𝛼𝐸

𝐸𝑇𝑅𝑠
)] [exp (−

𝛽𝐸

𝐸𝑇𝑅𝑠
)]  (4) 

Where ETRs is a scaling parameter defining the maximum potential photosynthetic rate, and 

 represents the slope of the downturn part of the curve, often referred to as 

photoinhibition. 

ETRmax is then calculated from the following: 

 

𝐸𝑇𝑅𝑚𝑎𝑥 = 𝐸𝑇𝑅𝑠 [
𝛼

𝛼+𝛽
] [

𝛽

𝛼+𝛽
]

𝛽/𝛼

  (5) 

See Frenette et al. (1993) for a detailed discussion. 

Non-linear regression assumes a few attributes of your data; the following statements 

should be true (or mostly true): 

• PAR values (x axis values) are accurate, while ETR values (y axis values containing II) 

are less accurate and contain the variability we are interested in, 
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• The variability of possible ETR values associated with a particular PAR value would 

be distributed normally and follow a bell curve – or put another way, there is no 

reason to expect ETR values associated with a particular PAR value to be 

overrepresented by higher or lower values than the mean value. 

• The standard deviation of each residual at each data point is similar in magnitude 

across the entire curve, or if weighted then the pattern is predictable, 

• Each ETR value is independent of any other ETR value that might be measured at 

that same PAR value. 

See Motulsky and Christopoulos (2013) for an accessible and more detailed discussion of 

assumptions inherent in non-linear regression methods. 

Analysis of the RLC – using a spreadsheet 

Once you have selected the model you want to use (simple asymptotic model, or model 

with downturn), what next?  You can use a statistics package – look for “non-linear least 

squares regression” as this is the technique used.  Most applications employ the Levenberg-

Marquardt algorithm.  Type in your model and copy and paste your data set into the 

program.  You may be asked to enter “seed” values, which are your best estimate values of 

ETRmax,  and Ik (ETRmax and Ik are easily obtained by eye from a graph of the RLC,  is 

calculated as ETRmax/Ek).  Some applications may only offer a standard set of models and 

not allow you to create your own.  

You may want to avoid the expense of purchasing a statistics package.  A spreadsheet with a 

Solver function can easily determine the parameter estimates (Brown 2001). However a 

macro will be needed if you want to determine the estimates of error associated with each 

parameter. Better still learn to use the open source statistics software “R”, and search for 

“non-linear least squares regression” for guidance.  By learning to use R you can then 

address most statistical problems with mathematical rigour. 

Rather than explain the details in words, I have created two spreadsheets you can use.  

These can be found at https://aquation.com.au/tools/. One spreadsheet simply calculates the 

parameter estimates for both a two-parameter curve and a three-parameter curve using the 

Solver function in Microsoft Excel.  Instructions are in the spreadsheet.  I suggest copying 

one of the worksheets to a new sheet within the workbook and experimenting with 

different models to see how it works. 

Determining the error associated with each parameter estimate is more difficult and 

requires a multistep process that is apparently best done using a macro.  Rather than 

reinvent the wheel, I’ve provided an Excel add-in courtesy of Leonardo Volpi and the Foxes 

Team, Italy.  You can find more information relating to this and other complex analysis in 

Excel at Professor Robert de Levie’s site http://www.bowdoin.edu/~rdelevie/excellaneous/. 
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Running the Solver-based model (parameter estimates only) 

Enter your data, and suitable estimates for ETRmax and alpha.  Select Solver and run it, 

minimising the Sum of Squares, and optimising the parameters ETR and alpha.  Note the 

slope of the curve must always be positive, this can be inserted in Solver as a condition.  

Observe the two lines in your figure, the modelled data should converge with the observed 

data.  If the modelled data suddenly produce a curve that does not approximate the 

observations at all, you will need to select better estimates of the model parameters. 

If you have set it up correctly, the parameter values should fluctuate during the iterative 

curve fitting procedure and settle down quickly so that just the last decimal places of the 

estimates continue to vary for a few iterations before the program stops.  The R2 value 

represents the proportion of data that the model describes, so an R2 of 1.0 would mean that 

100% of the data is explained by the model.   

Running the Macro-based model (includes error estimates for parameters) 

Enter your data, and suitable estimates for ETRmax and alpha.  Follow the instructions on 

the spreadsheet to activate and run the Optimiz macro (Using Addins for Excel).  Estimates 

of error for your parameters should be included as Standard Deviation, and 95% Confidence 

Interval.  The R2 value represents the proportion of data that the model describes, so an R2 

of 1.0 would mean that 100% of the data is explained by the model.  Estimates of error and 

R2 described here should be considered as indicative.  The calculation of error estimates for 

the parameters, and an R2 value for the curve itself is a complex topic with subtleties better 

described elsewhere. 

5. How to compare RLCs between treatments 

Pooling and comparing curve data 

One may obtain several RLCs on separate replicate plants or leaves in a treatment or plot 

and wish to pool or compare these treatments.  There are multiple approaches available. 

You need to be the final judge of what is best used considering your data and experimental 

or survey design.  See Peek et al. (2002) for a useful discussion. 

Replicates: pooling data of all curves is the simplest method.  If each of three curves has 

eight data pairs, then the pooled curve will have 24 -2 = 22 data pairs (the origin (0,0) need 

not be repeated).  A single analysis on this curve will provide single estimates for ETRmax 

and alpha, and an estimate of Ek can be determined from these.  Error associated with the 

parameter estimates will capture the variability or scatter of data points of all the curves.  

An alternative approach often used is to analyse each curve individually, derive the 

parameter estimates and calculate the mean and error of this set of estimates.  This 

approach is not recommended as it does not describe the variability associated with each 
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individual curve.  This is because only the parameter estimate is carried over when 

combining data (by averaging) from the multiple curves.   

Comparisons: Often investigators will perform RLCs on several samples relating to a 

treatment, and then repeat the process for samples from another treatment, with the 

intention of performing a simple T test (if two treatments) or analysis of variance (or more 

than two treatments) to determine whether the curves indicate a significant difference 

between treatments.  However, as discussed above, analysis of just the parameter 

estimates from each curve ignores the extent of variability within each curve (i.e. the 

amount of scatter), and is therefore not an ideal approach.   

Analysing Recovery Curves 

Recovery curves are obtained from repeated saturating pulse measurements after a light 

treatment (e.g. RLC) but while ambient light is still excluded.  Recovery from a high light 

event is generally seen as a rapid rise in yield that quickly (within minutes) slowing to a 

more gradual increase in yield, eventually reaching a maximum after hours to days, 

depending on the severity of the light treatment.  Both rapidly- and slowly-recovering 

processes can be described with exponential terms, usually in the form of a double 

exponential model.   

We have already discussed the use of non-linear models to analyse RLCs.  The application of 

the double exponential model to recovery curves is very similar.  In this instance, rather 

than address changes in ETR (which depend on there being a positive value of PAR), we can 

address changes in II, F or Fm. 
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