Shutter fluorometer – submersible
The Shutter Fluorometer Submersible Series comprises cylindrical waterproof sensors that either plug into a computer, or connect using a wireless link (particularly useful in wet environments). With Aquation’s easy-to-use software interface, users can quickly start making useful chlorophyll fluorescence measurements.
- Measures variable fluorescence of chlorophyll
- Uses PAM method
- Far red light for PSII deactivation
- Automatic ranging and autozero functions
- Fully waterproof for field and wet-lab applications
- Wireless or USB link to PC
- Sensor with flat base or cable extending from base
- Repeated measurements are possible when attached to PC or datalogger
- Easy-to-use software with an uncluttered interface
- Pre-programmed light curves are available
Specifications
- Measured parameters
- Calculated parameters
- Actinic Light (white LED)
- Saturating Light (white LED)
- Measuring light (470 nm LED)
- Far red light (735 nm LED)
- Voltage
- Communication
- Control
- Temperature range
- Dimensions (sensor)
- Dimensions (interface box)
- Weight
- Housing material
Column 1 | Column 2 | Column 3 |
---|---|---|
Column 1 Value | Column 2 Value | Column 3 Value |
Column 1 Value 2 | Column 2 Value 2 | Column 3 Value 2 |
Column 1 Value 3 | Column 2 Value 3 | Column 3 Value 3 |
Column 1 Value 4 | Column 2 Value 4 | Column 3 Value 4 |
Column 1 Value 5 | Column 2 Value 5 | Column 3 Value 5 |
Column 1 Value 6 | Column 2 Value 6 | Column 3 Value 6 |
Column 1 Value 7 | Column 2 Value 7 | Column 3 Value 7 |
Column 1 Value 8 | Column 2 Value 8 | Column 3 Value 8 |
Column 1 Value 9 | Column 2 Value 9 | Column 3 Value 9 |
Available accessories for use with Aquation’s Shutter Fluorometer systems are shown below:
Leaf clip
Publications using Aquation’s Shutter Fluorometer Systems are listed below:
Anton A, Hendriks IE, Marbà N, Krause-Jensen D, Garcias-Bonet N and Duarte CM. 2018. Iron Deficiency in Seagrasses and Macroalgae in the Red Sea Is Unrelated to Latitude and Physiological Performance. Front. Mar. Sci. 5,74:1-14
DOI: 10.3389/fmars.2018.00074
Procaccini, G., Ruocco, M., Marín-Guirao, L., et al. 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports 7:42890
DOI: 10.1038/srep42890 1
Cui, Y., Tian, Z., Zhang, X. et al. 2015. Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol Plant. 37:196.
DOI 10.1007/s11738-015-1944-2
Dudley, B.D., Hughes, R.F. and Ostertag, R. 2014. Groundwater availability mediates the ecosystem effects of an invasion of Prosopis pallida. Ecological Applications 24(8): 1954–1971.
DOI: 10.1890/13-1262.1
Clark, G.F., Stark, J.S., Johnston, E.L., Runcie, J.W, Goldsworthy, P.M., Raymond, B., and Riddle, M.J. 2013. Light-driven tipping points in polar ecosystems. Global Change Biology. 19(12): 3749-3761.
DOI: 10.1111/gcb.12337
Runcie, J.W. and Riddle, M.J. 2012. Estimating primary productivity of marine macroalgae in East Antarctica using in situ fluorometry. European Journal of Phycology 47(4): 449-460.
DOI: 10.1080/09670262.2012.736535
Runcie, J.W. and Riddle, M.J. 2011. Distinguishing downregulation from other nonphotochemical quenching of an Antarctic benthic macroalga using in situ European Journal of Phycology 46(3): 171-180.
DOI: 10.1080/09670262.2011.584635
Runcie, J.W., Paulo, D., Santos, R., Sharon, Y., Beer, S. & Silva, J. 2009. Photosynthetic Responses of Halophila stipulacea to a Light Gradient: I – In situ Energy Partitioning of Non-photochemical Quenching. Aquatic Biology 7: 143–152
DOI: 10.3354/ab00164
Videos using Aquation’s Shutter Fluorometer Systems can be viewed through the links below:
Shutter Fluorometer
See the Shutter Sensor in action: View Video Here